3.109 \(\int \csc ^5(e+f x) (a+b \tan ^2(e+f x))^{3/2} \, dx\)

Optimal. Leaf size=223 \[ -\frac {3 \left (a^2+6 a b+b^2\right ) \tanh ^{-1}\left (\frac {\sqrt {a} \sec (e+f x)}{\sqrt {a+b \sec ^2(e+f x)-b}}\right )}{8 \sqrt {a} f}+\frac {3 (a+3 b) \sec (e+f x) \sqrt {a+b \sec ^2(e+f x)-b}}{8 f}-\frac {3 (a+b) \csc ^2(e+f x) \sec (e+f x) \sqrt {a+b \sec ^2(e+f x)-b}}{8 f}+\frac {3 \sqrt {b} (a+b) \tanh ^{-1}\left (\frac {\sqrt {b} \sec (e+f x)}{\sqrt {a+b \sec ^2(e+f x)-b}}\right )}{2 f}-\frac {\cot (e+f x) \csc ^3(e+f x) \left (a+b \sec ^2(e+f x)-b\right )^{3/2}}{4 f} \]

[Out]

-1/4*cot(f*x+e)*csc(f*x+e)^3*(a-b+b*sec(f*x+e)^2)^(3/2)/f-3/8*(a^2+6*a*b+b^2)*arctanh(sec(f*x+e)*a^(1/2)/(a-b+
b*sec(f*x+e)^2)^(1/2))/f/a^(1/2)+3/2*(a+b)*arctanh(sec(f*x+e)*b^(1/2)/(a-b+b*sec(f*x+e)^2)^(1/2))*b^(1/2)/f+3/
8*(a+3*b)*sec(f*x+e)*(a-b+b*sec(f*x+e)^2)^(1/2)/f-3/8*(a+b)*csc(f*x+e)^2*sec(f*x+e)*(a-b+b*sec(f*x+e)^2)^(1/2)
/f

________________________________________________________________________________________

Rubi [A]  time = 0.36, antiderivative size = 223, normalized size of antiderivative = 1.00, number of steps used = 9, number of rules used = 9, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.360, Rules used = {3664, 467, 577, 582, 523, 217, 206, 377, 207} \[ -\frac {3 \left (a^2+6 a b+b^2\right ) \tanh ^{-1}\left (\frac {\sqrt {a} \sec (e+f x)}{\sqrt {a+b \sec ^2(e+f x)-b}}\right )}{8 \sqrt {a} f}+\frac {3 (a+3 b) \sec (e+f x) \sqrt {a+b \sec ^2(e+f x)-b}}{8 f}-\frac {3 (a+b) \csc ^2(e+f x) \sec (e+f x) \sqrt {a+b \sec ^2(e+f x)-b}}{8 f}+\frac {3 \sqrt {b} (a+b) \tanh ^{-1}\left (\frac {\sqrt {b} \sec (e+f x)}{\sqrt {a+b \sec ^2(e+f x)-b}}\right )}{2 f}-\frac {\cot (e+f x) \csc ^3(e+f x) \left (a+b \sec ^2(e+f x)-b\right )^{3/2}}{4 f} \]

Antiderivative was successfully verified.

[In]

Int[Csc[e + f*x]^5*(a + b*Tan[e + f*x]^2)^(3/2),x]

[Out]

(-3*(a^2 + 6*a*b + b^2)*ArcTanh[(Sqrt[a]*Sec[e + f*x])/Sqrt[a - b + b*Sec[e + f*x]^2]])/(8*Sqrt[a]*f) + (3*Sqr
t[b]*(a + b)*ArcTanh[(Sqrt[b]*Sec[e + f*x])/Sqrt[a - b + b*Sec[e + f*x]^2]])/(2*f) + (3*(a + 3*b)*Sec[e + f*x]
*Sqrt[a - b + b*Sec[e + f*x]^2])/(8*f) - (3*(a + b)*Csc[e + f*x]^2*Sec[e + f*x]*Sqrt[a - b + b*Sec[e + f*x]^2]
)/(8*f) - (Cot[e + f*x]*Csc[e + f*x]^3*(a - b + b*Sec[e + f*x]^2)^(3/2))/(4*f)

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 207

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTanh[(Rt[b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && NegQ[a/b] && (LtQ[a, 0] || GtQ[b, 0])

Rule 217

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rule 377

Int[((a_) + (b_.)*(x_)^(n_))^(p_)/((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Subst[Int[1/(c - (b*c - a*d)*x^n), x]
, x, x/(a + b*x^n)^(1/n)] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0] && EqQ[n*p + 1, 0] && IntegerQ[n]

Rule 467

Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[(e^(n -
1)*(e*x)^(m - n + 1)*(a + b*x^n)^(p + 1)*(c + d*x^n)^q)/(b*n*(p + 1)), x] - Dist[e^n/(b*n*(p + 1)), Int[(e*x)^
(m - n)*(a + b*x^n)^(p + 1)*(c + d*x^n)^(q - 1)*Simp[c*(m - n + 1) + d*(m + n*(q - 1) + 1)*x^n, x], x], x] /;
FreeQ[{a, b, c, d, e}, x] && NeQ[b*c - a*d, 0] && IGtQ[n, 0] && LtQ[p, -1] && GtQ[q, 0] && GtQ[m - n + 1, 0] &
& IntBinomialQ[a, b, c, d, e, m, n, p, q, x]

Rule 523

Int[((e_) + (f_.)*(x_)^(n_))/(((a_) + (b_.)*(x_)^(n_))*Sqrt[(c_) + (d_.)*(x_)^(n_)]), x_Symbol] :> Dist[f/b, I
nt[1/Sqrt[c + d*x^n], x], x] + Dist[(b*e - a*f)/b, Int[1/((a + b*x^n)*Sqrt[c + d*x^n]), x], x] /; FreeQ[{a, b,
 c, d, e, f, n}, x]

Rule 577

Int[((g_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_.)*((e_) + (f_.)*(x_)^(n_)),
x_Symbol] :> -Simp[((b*e - a*f)*(g*x)^(m + 1)*(a + b*x^n)^(p + 1)*(c + d*x^n)^q)/(a*b*g*n*(p + 1)), x] + Dist[
1/(a*b*n*(p + 1)), Int[(g*x)^m*(a + b*x^n)^(p + 1)*(c + d*x^n)^(q - 1)*Simp[c*(b*e*n*(p + 1) + (b*e - a*f)*(m
+ 1)) + d*(b*e*n*(p + 1) + (b*e - a*f)*(m + n*q + 1))*x^n, x], x], x] /; FreeQ[{a, b, c, d, e, f, g, m}, x] &&
 IGtQ[n, 0] && LtQ[p, -1] && GtQ[q, 0] &&  !(EqQ[q, 1] && SimplerQ[b*c - a*d, b*e - a*f])

Rule 582

Int[((g_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.)*((e_) + (f_.)*(x_)^(n_)),
 x_Symbol] :> Simp[(f*g^(n - 1)*(g*x)^(m - n + 1)*(a + b*x^n)^(p + 1)*(c + d*x^n)^(q + 1))/(b*d*(m + n*(p + q
+ 1) + 1)), x] - Dist[g^n/(b*d*(m + n*(p + q + 1) + 1)), Int[(g*x)^(m - n)*(a + b*x^n)^p*(c + d*x^n)^q*Simp[a*
f*c*(m - n + 1) + (a*f*d*(m + n*q + 1) + b*(f*c*(m + n*p + 1) - e*d*(m + n*(p + q + 1) + 1)))*x^n, x], x], x]
/; FreeQ[{a, b, c, d, e, f, g, p, q}, x] && IGtQ[n, 0] && GtQ[m, n - 1]

Rule 3664

Int[sin[(e_.) + (f_.)*(x_)]^(m_.)*((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)]^2)^(p_.), x_Symbol] :> With[{ff = Free
Factors[Sec[e + f*x], x]}, Dist[1/(f*ff^m), Subst[Int[((-1 + ff^2*x^2)^((m - 1)/2)*(a - b + b*ff^2*x^2)^p)/x^(
m + 1), x], x, Sec[e + f*x]/ff], x]] /; FreeQ[{a, b, e, f, p}, x] && IntegerQ[(m - 1)/2]

Rubi steps

\begin {align*} \int \csc ^5(e+f x) \left (a+b \tan ^2(e+f x)\right )^{3/2} \, dx &=\frac {\operatorname {Subst}\left (\int \frac {x^4 \left (a-b+b x^2\right )^{3/2}}{\left (-1+x^2\right )^3} \, dx,x,\sec (e+f x)\right )}{f}\\ &=-\frac {\cot (e+f x) \csc ^3(e+f x) \left (a-b+b \sec ^2(e+f x)\right )^{3/2}}{4 f}+\frac {\operatorname {Subst}\left (\int \frac {x^2 \sqrt {a-b+b x^2} \left (3 (a-b)+6 b x^2\right )}{\left (-1+x^2\right )^2} \, dx,x,\sec (e+f x)\right )}{4 f}\\ &=-\frac {3 (a+b) \csc ^2(e+f x) \sec (e+f x) \sqrt {a-b+b \sec ^2(e+f x)}}{8 f}-\frac {\cot (e+f x) \csc ^3(e+f x) \left (a-b+b \sec ^2(e+f x)\right )^{3/2}}{4 f}+\frac {\operatorname {Subst}\left (\int \frac {x^2 \left (3 (a-b) (a+5 b)+6 b (a+3 b) x^2\right )}{\left (-1+x^2\right ) \sqrt {a-b+b x^2}} \, dx,x,\sec (e+f x)\right )}{8 f}\\ &=\frac {3 (a+3 b) \sec (e+f x) \sqrt {a-b+b \sec ^2(e+f x)}}{8 f}-\frac {3 (a+b) \csc ^2(e+f x) \sec (e+f x) \sqrt {a-b+b \sec ^2(e+f x)}}{8 f}-\frac {\cot (e+f x) \csc ^3(e+f x) \left (a-b+b \sec ^2(e+f x)\right )^{3/2}}{4 f}-\frac {\operatorname {Subst}\left (\int \frac {-6 (a-b) b (a+3 b)-24 b^2 (a+b) x^2}{\left (-1+x^2\right ) \sqrt {a-b+b x^2}} \, dx,x,\sec (e+f x)\right )}{16 b f}\\ &=\frac {3 (a+3 b) \sec (e+f x) \sqrt {a-b+b \sec ^2(e+f x)}}{8 f}-\frac {3 (a+b) \csc ^2(e+f x) \sec (e+f x) \sqrt {a-b+b \sec ^2(e+f x)}}{8 f}-\frac {\cot (e+f x) \csc ^3(e+f x) \left (a-b+b \sec ^2(e+f x)\right )^{3/2}}{4 f}+\frac {(3 b (a+b)) \operatorname {Subst}\left (\int \frac {1}{\sqrt {a-b+b x^2}} \, dx,x,\sec (e+f x)\right )}{2 f}+\frac {\left (3 \left (a^2+6 a b+b^2\right )\right ) \operatorname {Subst}\left (\int \frac {1}{\left (-1+x^2\right ) \sqrt {a-b+b x^2}} \, dx,x,\sec (e+f x)\right )}{8 f}\\ &=\frac {3 (a+3 b) \sec (e+f x) \sqrt {a-b+b \sec ^2(e+f x)}}{8 f}-\frac {3 (a+b) \csc ^2(e+f x) \sec (e+f x) \sqrt {a-b+b \sec ^2(e+f x)}}{8 f}-\frac {\cot (e+f x) \csc ^3(e+f x) \left (a-b+b \sec ^2(e+f x)\right )^{3/2}}{4 f}+\frac {(3 b (a+b)) \operatorname {Subst}\left (\int \frac {1}{1-b x^2} \, dx,x,\frac {\sec (e+f x)}{\sqrt {a-b+b \sec ^2(e+f x)}}\right )}{2 f}+\frac {\left (3 \left (a^2+6 a b+b^2\right )\right ) \operatorname {Subst}\left (\int \frac {1}{-1+a x^2} \, dx,x,\frac {\sec (e+f x)}{\sqrt {a-b+b \sec ^2(e+f x)}}\right )}{8 f}\\ &=-\frac {3 \left (a^2+6 a b+b^2\right ) \tanh ^{-1}\left (\frac {\sqrt {a} \sec (e+f x)}{\sqrt {a-b+b \sec ^2(e+f x)}}\right )}{8 \sqrt {a} f}+\frac {3 \sqrt {b} (a+b) \tanh ^{-1}\left (\frac {\sqrt {b} \sec (e+f x)}{\sqrt {a-b+b \sec ^2(e+f x)}}\right )}{2 f}+\frac {3 (a+3 b) \sec (e+f x) \sqrt {a-b+b \sec ^2(e+f x)}}{8 f}-\frac {3 (a+b) \csc ^2(e+f x) \sec (e+f x) \sqrt {a-b+b \sec ^2(e+f x)}}{8 f}-\frac {\cot (e+f x) \csc ^3(e+f x) \left (a-b+b \sec ^2(e+f x)\right )^{3/2}}{4 f}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 5.24, size = 409, normalized size = 1.83 \[ \frac {\cos (e+f x) \sqrt {\sec ^2(e+f x) ((a-b) \cos (2 (e+f x))+a+b)} \left (-\frac {3 \sec ^2\left (\frac {1}{2} (e+f x)\right ) \sqrt {\cos ^2(e+f x) \sec ^4\left (\frac {1}{2} (e+f x)\right )} \left (\left (a^2+6 a b+b^2\right ) \left (\tanh ^{-1}\left (\frac {a-(a-2 b) \tan ^2\left (\frac {1}{2} (e+f x)\right )}{\sqrt {a} \sqrt {a \left (\tan ^2\left (\frac {1}{2} (e+f x)\right )-1\right )^2+4 b \tan ^2\left (\frac {1}{2} (e+f x)\right )}}\right )+\tanh ^{-1}\left (\frac {a \left (\tan ^2\left (\frac {1}{2} (e+f x)\right )-1\right )+2 b}{\sqrt {a} \sqrt {a \left (\tan ^2\left (\frac {1}{2} (e+f x)\right )-1\right )^2+4 b \tan ^2\left (\frac {1}{2} (e+f x)\right )}}\right )\right )-8 \sqrt {a} \sqrt {b} (a+b) \tanh ^{-1}\left (\frac {\sqrt {b} \left (\tan ^2\left (\frac {1}{2} (e+f x)\right )+1\right )}{\sqrt {a \left (\tan ^2\left (\frac {1}{2} (e+f x)\right )-1\right )^2+4 b \tan ^2\left (\frac {1}{2} (e+f x)\right )}}\right )\right )}{\sqrt {a} \sqrt {\left (\tan ^2\left (\frac {1}{2} (e+f x)\right )-1\right )^2} \sqrt {a \left (\tan ^2\left (\frac {1}{2} (e+f x)\right )-1\right )^2+4 b \tan ^2\left (\frac {1}{2} (e+f x)\right )}}-2 \csc ^2(e+f x) \left (2 a \csc ^2(e+f x)+3 a+5 b\right )+8 b \sec ^2(e+f x)\right )}{16 \sqrt {2} f} \]

Antiderivative was successfully verified.

[In]

Integrate[Csc[e + f*x]^5*(a + b*Tan[e + f*x]^2)^(3/2),x]

[Out]

(Cos[e + f*x]*Sqrt[(a + b + (a - b)*Cos[2*(e + f*x)])*Sec[e + f*x]^2]*(-2*Csc[e + f*x]^2*(3*a + 5*b + 2*a*Csc[
e + f*x]^2) + 8*b*Sec[e + f*x]^2 - (3*(-8*Sqrt[a]*Sqrt[b]*(a + b)*ArcTanh[(Sqrt[b]*(1 + Tan[(e + f*x)/2]^2))/S
qrt[4*b*Tan[(e + f*x)/2]^2 + a*(-1 + Tan[(e + f*x)/2]^2)^2]] + (a^2 + 6*a*b + b^2)*(ArcTanh[(a - (a - 2*b)*Tan
[(e + f*x)/2]^2)/(Sqrt[a]*Sqrt[4*b*Tan[(e + f*x)/2]^2 + a*(-1 + Tan[(e + f*x)/2]^2)^2])] + ArcTanh[(2*b + a*(-
1 + Tan[(e + f*x)/2]^2))/(Sqrt[a]*Sqrt[4*b*Tan[(e + f*x)/2]^2 + a*(-1 + Tan[(e + f*x)/2]^2)^2])]))*Sec[(e + f*
x)/2]^2*Sqrt[Cos[e + f*x]^2*Sec[(e + f*x)/2]^4])/(Sqrt[a]*Sqrt[(-1 + Tan[(e + f*x)/2]^2)^2]*Sqrt[4*b*Tan[(e +
f*x)/2]^2 + a*(-1 + Tan[(e + f*x)/2]^2)^2])))/(16*Sqrt[2]*f)

________________________________________________________________________________________

fricas [A]  time = 2.06, size = 1365, normalized size = 6.12 \[ \text {result too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csc(f*x+e)^5*(a+b*tan(f*x+e)^2)^(3/2),x, algorithm="fricas")

[Out]

[1/16*(3*((a^2 + 6*a*b + b^2)*cos(f*x + e)^5 - 2*(a^2 + 6*a*b + b^2)*cos(f*x + e)^3 + (a^2 + 6*a*b + b^2)*cos(
f*x + e))*sqrt(a)*log(-2*((a - b)*cos(f*x + e)^2 - 2*sqrt(a)*sqrt(((a - b)*cos(f*x + e)^2 + b)/cos(f*x + e)^2)
*cos(f*x + e) + a + b)/(cos(f*x + e)^2 - 1)) + 12*((a^2 + a*b)*cos(f*x + e)^5 - 2*(a^2 + a*b)*cos(f*x + e)^3 +
 (a^2 + a*b)*cos(f*x + e))*sqrt(b)*log(-((a - b)*cos(f*x + e)^2 + 2*sqrt(b)*sqrt(((a - b)*cos(f*x + e)^2 + b)/
cos(f*x + e)^2)*cos(f*x + e) + 2*b)/cos(f*x + e)^2) + 2*(3*(a^2 + 3*a*b)*cos(f*x + e)^4 - (5*a^2 + 13*a*b)*cos
(f*x + e)^2 + 4*a*b)*sqrt(((a - b)*cos(f*x + e)^2 + b)/cos(f*x + e)^2))/(a*f*cos(f*x + e)^5 - 2*a*f*cos(f*x +
e)^3 + a*f*cos(f*x + e)), 1/8*(3*((a^2 + 6*a*b + b^2)*cos(f*x + e)^5 - 2*(a^2 + 6*a*b + b^2)*cos(f*x + e)^3 +
(a^2 + 6*a*b + b^2)*cos(f*x + e))*sqrt(-a)*arctan(sqrt(-a)*sqrt(((a - b)*cos(f*x + e)^2 + b)/cos(f*x + e)^2)*c
os(f*x + e)/a) + 6*((a^2 + a*b)*cos(f*x + e)^5 - 2*(a^2 + a*b)*cos(f*x + e)^3 + (a^2 + a*b)*cos(f*x + e))*sqrt
(b)*log(-((a - b)*cos(f*x + e)^2 + 2*sqrt(b)*sqrt(((a - b)*cos(f*x + e)^2 + b)/cos(f*x + e)^2)*cos(f*x + e) +
2*b)/cos(f*x + e)^2) + (3*(a^2 + 3*a*b)*cos(f*x + e)^4 - (5*a^2 + 13*a*b)*cos(f*x + e)^2 + 4*a*b)*sqrt(((a - b
)*cos(f*x + e)^2 + b)/cos(f*x + e)^2))/(a*f*cos(f*x + e)^5 - 2*a*f*cos(f*x + e)^3 + a*f*cos(f*x + e)), -1/16*(
24*((a^2 + a*b)*cos(f*x + e)^5 - 2*(a^2 + a*b)*cos(f*x + e)^3 + (a^2 + a*b)*cos(f*x + e))*sqrt(-b)*arctan(sqrt
(-b)*sqrt(((a - b)*cos(f*x + e)^2 + b)/cos(f*x + e)^2)*cos(f*x + e)/b) - 3*((a^2 + 6*a*b + b^2)*cos(f*x + e)^5
 - 2*(a^2 + 6*a*b + b^2)*cos(f*x + e)^3 + (a^2 + 6*a*b + b^2)*cos(f*x + e))*sqrt(a)*log(-2*((a - b)*cos(f*x +
e)^2 - 2*sqrt(a)*sqrt(((a - b)*cos(f*x + e)^2 + b)/cos(f*x + e)^2)*cos(f*x + e) + a + b)/(cos(f*x + e)^2 - 1))
 - 2*(3*(a^2 + 3*a*b)*cos(f*x + e)^4 - (5*a^2 + 13*a*b)*cos(f*x + e)^2 + 4*a*b)*sqrt(((a - b)*cos(f*x + e)^2 +
 b)/cos(f*x + e)^2))/(a*f*cos(f*x + e)^5 - 2*a*f*cos(f*x + e)^3 + a*f*cos(f*x + e)), 1/8*(3*((a^2 + 6*a*b + b^
2)*cos(f*x + e)^5 - 2*(a^2 + 6*a*b + b^2)*cos(f*x + e)^3 + (a^2 + 6*a*b + b^2)*cos(f*x + e))*sqrt(-a)*arctan(s
qrt(-a)*sqrt(((a - b)*cos(f*x + e)^2 + b)/cos(f*x + e)^2)*cos(f*x + e)/a) - 12*((a^2 + a*b)*cos(f*x + e)^5 - 2
*(a^2 + a*b)*cos(f*x + e)^3 + (a^2 + a*b)*cos(f*x + e))*sqrt(-b)*arctan(sqrt(-b)*sqrt(((a - b)*cos(f*x + e)^2
+ b)/cos(f*x + e)^2)*cos(f*x + e)/b) + (3*(a^2 + 3*a*b)*cos(f*x + e)^4 - (5*a^2 + 13*a*b)*cos(f*x + e)^2 + 4*a
*b)*sqrt(((a - b)*cos(f*x + e)^2 + b)/cos(f*x + e)^2))/(a*f*cos(f*x + e)^5 - 2*a*f*cos(f*x + e)^3 + a*f*cos(f*
x + e))]

________________________________________________________________________________________

giac [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Exception raised: TypeError} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csc(f*x+e)^5*(a+b*tan(f*x+e)^2)^(3/2),x, algorithm="giac")

[Out]

Exception raised: TypeError >> An error occurred running a Giac command:INPUT:sage2:=int(sage0,x):;OUTPUT:Unab
le to check sign: (2*pi/x/2)>(-2*pi/x/2)Unable to check sign: (2*pi/x/2)>(-2*pi/x/2)Unable to check sign: (2*p
i/x/2)>(-2*pi/x/2)Unable to check sign: (2*pi/x/2)>(-2*pi/x/2)Unable to check sign: (2*pi/x/2)>(-2*pi/x/2)Unab
le to check sign: (2*pi/x/2)>(-2*pi/x/2)Unable to check sign: (2*pi/x/2)>(-2*pi/x/2)Unable to check sign: (2*p
i/x/2)>(-2*pi/x/2)Unable to check sign: (2*pi/t_nostep/2)>(-2*pi/t_nostep/2)Unable to check sign: (2*pi/t_nost
ep/2)>(-2*pi/t_nostep/2)Unable to check sign: (2*pi/t_nostep/2)>(-2*pi/t_nostep/2)Unable to check sign: (2*pi/
t_nostep/2)>(-2*pi/t_nostep/2)Unable to check sign: (2*pi/t_nostep/2)>(-2*pi/t_nostep/2)Unable to check sign:
(2*pi/t_nostep/2)>(-2*pi/t_nostep/2)Unable to check sign: (2*pi/t_nostep/2)>(-2*pi/t_nostep/2)Unable to check
sign: (2*pi/t_nostep/2)>(-2*pi/t_nostep/2)Unable to check sign: (2*pi/t_nostep/2)>(-2*pi/t_nostep/2)Unable to
check sign: (2*pi/t_nostep/2)>(-2*pi/t_nostep/2)Unable to check sign: (2*pi/t_nostep/2)>(-2*pi/t_nostep/2)Unab
le to check sign: (2*pi/t_nostep/2)>(-2*pi/t_nostep/2)Unable to check sign: (2*pi/t_nostep/2)>(-2*pi/t_nostep/
2)Unable to check sign: (2*pi/t_nostep/2)>(-2*pi/t_nostep/2)Unable to check sign: (2*pi/t_nostep/2)>(-2*pi/t_n
ostep/2)Unable to check sign: (2*pi/t_nostep/2)>(-2*pi/t_nostep/2)Unable to check sign: (2*pi/t_nostep/2)>(-2*
pi/t_nostep/2)Unable to check sign: (2*pi/t_nostep/2)>(-2*pi/t_nostep/2)Unable to check sign: (2*pi/t_nostep/2
)>(-2*pi/t_nostep/2)Unable to check sign: (2*pi/t_nostep/2)>(-2*pi/t_nostep/2)Unable to check sign: (2*pi/t_no
step/2)>(-2*pi/t_nostep/2)Unable to check sign: (2*pi/t_nostep/2)>(-2*pi/t_nostep/2)Unable to check sign: (2*p
i/t_nostep/2)>(-2*pi/t_nostep/2)Unable to check sign: (2*pi/t_nostep/2)>(-2*pi/t_nostep/2)Unable to check sign
: (2*pi/t_nostep/2)>(-2*pi/t_nostep/2)Unable to check sign: (2*pi/t_nostep/2)>(-2*pi/t_nostep/2)Unable to chec
k sign: (2*pi/t_nostep/2)>(-2*pi/t_nostep/2)Unable to check sign: (2*pi/t_nostep/2)>(-2*pi/t_nostep/2)Unable t
o check sign: (2*pi/t_nostep/2)>(-2*pi/t_nostep/2)Unable to check sign: (2*pi/t_nostep/2)>(-2*pi/t_nostep/2)Un
able to check sign: (2*pi/t_nostep/2)>(-2*pi/t_nostep/2)Unable to check sign: (2*pi/t_nostep/2)>(-2*pi/t_noste
p/2)Unable to check sign: (2*pi/t_nostep/2)>(-2*pi/t_nostep/2)Unable to check sign: (2*pi/t_nostep/2)>(-2*pi/t
_nostep/2)Unable to check sign: (2*pi/t_nostep/2)>(-2*pi/t_nostep/2)Unable to check sign: (2*pi/t_nostep/2)>(-
2*pi/t_nostep/2)Unable to check sign: (2*pi/t_nostep/2)>(-2*pi/t_nostep/2)Unable to check sign: (2*pi/t_nostep
/2)>(-2*pi/t_nostep/2)Unable to check sign: (2*pi/t_nostep/2)>(-2*pi/t_nostep/2)Unable to check sign: (2*pi/t_
nostep/2)>(-2*pi/t_nostep/2)Unable to check sign: (2*pi/t_nostep/2)>(-2*pi/t_nostep/2)Unable to check sign: (2
*pi/t_nostep/2)>(-2*pi/t_nostep/2)Unable to check sign: (2*pi/t_nostep/2)>(-2*pi/t_nostep/2)Unable to check si
gn: (2*pi/t_nostep/2)>(-2*pi/t_nostep/2)Unable to check sign: (2*pi/t_nostep/2)>(-2*pi/t_nostep/2)Unable to ch
eck sign: (2*pi/t_nostep/2)>(-2*pi/t_nostep/2)Unable to check sign: (2*pi/t_nostep/2)>(-2*pi/t_nostep/2)Unable
 to check sign: (2*pi/t_nostep/2)>(-2*pi/t_nostep/2)Unable to check sign: (2*pi/t_nostep/2)>(-2*pi/t_nostep/2)
Unable to check sign: (2*pi/t_nostep/2)>(-2*pi/t_nostep/2)Unable to check sign: (2*pi/t_nostep/2)>(-2*pi/t_nos
tep/2)Unable to check sign: (2*pi/t_nostep/2)>(-2*pi/t_nostep/2)Unable to check sign: (2*pi/t_nostep/2)>(-2*pi
/t_nostep/2)Unable to check sign: (2*pi/t_nostep/2)>(-2*pi/t_nostep/2)Unable to check sign: (2*pi/t_nostep/2)>
(-2*pi/t_nostep/2)Warning, integration of abs or sign assumes constant sign by intervals (correct if the argum
ent is real):Check [abs(t_nostep^2-1)]Discontinuities at zeroes of t_nostep^2-1 were not checkedUnable to chec
k sign: (2*pi/t_nostep/2)>(-2*pi/t_nostep/2)Unable to check sign: (2*pi/t_nostep/2)>(-2*pi/t_nostep/2)Unable t
o check sign: (2*pi/t_nostep/2)>(-2*pi/t_nostep/2)Unable to check sign: (2*pi/t_nostep/2)>(-2*pi/t_nostep/2)Un
able to check sign: (2*pi/t_nostep/2)>(-2*pi/t_nostep/2)Unable to check sign: (2*pi/t_nostep/2)>(-2*pi/t_noste
p/2)Unable to check sign: (2*pi/t_nostep/2)>(-2*pi/t_nostep/2)Unable to check sign: (2*pi/t_nostep/2)>(-2*pi/t
_nostep/2)Unable to check sign: (2*pi/t_nostep/2)>(-2*pi/t_nostep/2)Unable to check sign: (2*pi/t_nostep/2)>(-
2*pi/t_nostep/2)Unable to check sign: (2*pi/t_nostep/2)>(-2*pi/t_nostep/2)Unable to check sign: (2*pi/t_nostep
/2)>(-2*pi/t_nostep/2)Unable to check sign: (2*pi/t_nostep/2)>(-2*pi/t_nostep/2)Unable to check sign: (2*pi/t_
nostep/2)>(-2*pi/t_nostep/2)Unable to check sign: (2*pi/t_nostep/2)>(-2*pi/t_nostep/2)Unable to check sign: (2
*pi/t_nostep/2)>(-2*pi/t_nostep/2)Unable to check sign: (2*pi/t_nostep/2)>(-2*pi/t_nostep/2)Unable to check si
gn: (2*pi/t_nostep/2)>(-2*pi/t_nostep/2)Unable to check sign: (2*pi/t_nostep/2)>(-2*pi/t_nostep/2)Unable to ch
eck sign: (2*pi/t_nostep/2)>(-2*pi/t_nostep/2)Unable to check sign: (2*pi/t_nostep/2)>(-2*pi/t_nostep/2)Unable
 to check sign: (2*pi/t_nostep/2)>(-2*pi/t_nostep/2)Unable to check sign: (2*pi/t_nostep/2)>(-2*pi/t_nostep/2)
Unable to check sign: (2*pi/t_nostep/2)>(-2*pi/t_nostep/2)Unable to check sign: (2*pi/t_nostep/2)>(-2*pi/t_nos
tep/2)Unable to check sign: (2*pi/t_nostep/2)>(-2*pi/t_nostep/2)Unable to check sign: (2*pi/t_nostep/2)>(-2*pi
/t_nostep/2)Unable to check sign: (2*pi/t_nostep/2)>(-2*pi/t_nostep/2)Unable to check sign: (2*pi/t_nostep/2)>
(-2*pi/t_nostep/2)Unable to check sign: (2*pi/t_nostep/2)>(-2*pi/t_nostep/2)Unable to check sign: (2*pi/t_nost
ep/2)>(-2*pi/t_nostep/2)Unable to check sign: (2*pi/t_nostep/2)>(-2*pi/t_nostep/2)Unable to check sign: (2*pi/
t_nostep/2)>(-2*pi/t_nostep/2)Unable to check sign: (2*pi/x/2)>(-2*pi/x/2)Unable to check sign: (2*pi/x/2)>(-2
*pi/x/2)Unable to check sign: (2*pi/x/2)>(-2*pi/x/2)Unable to check sign: (2*pi/x/2)>(-2*pi/x/2)Unable to chec
k sign: (2*pi/x/2)>(-2*pi/x/2)Unable to check sign: (2*pi/x/2)>(-2*pi/x/2)Unable to check sign: (2*pi/x/2)>(-2
*pi/x/2)Unable to check sign: (2*pi/x/2)>(-2*pi/x/2)Unable to check sign: (2*pi/x/2)>(-2*pi/x/2)Unable to chec
k sign: (2*pi/x/2)>(-2*pi/x/2)Unable to check sign: (4*pi/t_nostep/2)>(-4*pi/t_nostep/2)Unable to check sign:
(2*pi/t_nostep/2)>(-2*pi/t_nostep/2)Unable to check sign: (2*pi/t_nostep/2)>(-2*pi/t_nostep/2)Unable to check
sign: (4*pi/t_nostep/2)>(-4*pi/t_nostep/2)Unable to check sign: (2*pi/t_nostep/2)>(-2*pi/t_nostep/2)Warning, i
ntegration of abs or sign assumes constant sign by intervals (correct if the argument is real):Check [abs(t_no
step^2-1)]Evaluation time: 3.02Unable to divide, perhaps due to rounding error%%%{262144,[12,12]%%%}+%%%{%%%{-
1572864,[1]%%%},[12,11]%%%}+%%%{%%%{3932160,[2]%%%},[12,10]%%%}+%%%{%%%{-5242880,[3]%%%},[12,9]%%%}+%%%{%%%{39
32160,[4]%%%},[12,8]%%%}+%%%{%%%{-1572864,[5]%%%},[12,7]%%%}+%%%{%%%{262144,[6]%%%},[12,6]%%%}+%%%{%%{[1572864
,0]:[1,0,%%%{-1,[1]%%%}]%%},[11,12]%%%}+%%%{%%{[%%%{-9437184,[1]%%%},0]:[1,0,%%%{-1,[1]%%%}]%%},[11,11]%%%}+%%
%{%%{[%%%{23592960,[2]%%%},0]:[1,0,%%%{-1,[1]%%%}]%%},[11,10]%%%}+%%%{%%{[%%%{-31457280,[3]%%%},0]:[1,0,%%%{-1
,[1]%%%}]%%},[11,9]%%%}+%%%{%%{[%%%{23592960,[4]%%%},0]:[1,0,%%%{-1,[1]%%%}]%%},[11,8]%%%}+%%%{%%{[%%%{-943718
4,[5]%%%},0]:[1,0,%%%{-1,[1]%%%}]%%},[11,7]%%%}+%%%{%%{[%%%{1572864,[6]%%%},0]:[1,0,%%%{-1,[1]%%%}]%%},[11,6]%
%%}+%%%{-3145728,[10,13]%%%}+%%%{%%%{22020096,[1]%%%},[10,12]%%%}+%%%{%%%{-66060288,[2]%%%},[10,11]%%%}+%%%{%%
%{110100480,[3]%%%},[10,10]%%%}+%%%{%%%{-110100480,[4]%%%},[10,9]%%%}+%%%{%%%{66060288,[5]%%%},[10,8]%%%}+%%%{
%%%{-22020096,[6]%%%},[10,7]%%%}+%%%{%%%{3145728,[7]%%%},[10,6]%%%}+%%%{%%{[-12582912,0]:[1,0,%%%{-1,[1]%%%}]%
%},[9,13]%%%}+%%%{%%{[%%%{76021760,[1]%%%},0]:[1,0,%%%{-1,[1]%%%}]%%},[9,12]%%%}+%%%{%%{[%%%{-191889408,[2]%%%
},0]:[1,0,%%%{-1,[1]%%%}]%%},[9,11]%%%}+%%%{%%{[%%%{259522560,[3]%%%},0]:[1,0,%%%{-1,[1]%%%}]%%},[9,10]%%%}+%%
%{%%{[%%%{-199229440,[4]%%%},0]:[1,0,%%%{-1,[1]%%%}]%%},[9,9]%%%}+%%%{%%{[%%%{83361792,[5]%%%},0]:[1,0,%%%{-1,
[1]%%%}]%%},[9,8]%%%}+%%%{%%{[%%%{-15728640,[6]%%%},0]:[1,0,%%%{-1,[1]%%%}]%%},[9,7]%%%}+%%%{%%{[%%%{524288,[7
]%%%},0]:[1,0,%%%{-1,[1]%%%}]%%},[9,6]%%%}+%%%{12582912,[8,14]%%%}+%%%{%%%{-84934656,[1]%%%},[8,13]%%%}+%%%{%%
%{238288896,[2]%%%},[8,12]%%%}+%%%{%%%{-350748672,[3]%%%},[8,11]%%%}+%%%{%%%{271319040,[4]%%%},[8,10]%%%}+%%%{
%%%{-75497472,[5]%%%},[8,9]%%%}+%%%{%%%{-36962304,[6]%%%},[8,8]%%%}+%%%{%%%{33030144,[7]%%%},[8,7]%%%}+%%%{%%%
{-7077888,[8]%%%},[8,6]%%%}+%%%{%%{[25165824,0]:[1,0,%%%{-1,[1]%%%}]%%},[7,14]%%%}+%%%{%%{[%%%{-125829120,[1]%
%%},0]:[1,0,%%%{-1,[1]%%%}]%%},[7,13]%%%}+%%%{%%{[%%%{217055232,[2]%%%},0]:[1,0,%%%{-1,[1]%%%}]%%},[7,12]%%%}+
%%%{%%{[%%%{-69206016,[3]%%%},0]:[1,0,%%%{-1,[1]%%%}]%%},[7,11]%%%}+%%%{%%{[%%%{-267386880,[4]%%%},0]:[1,0,%%%
{-1,[1]%%%}]%%},[7,10]%%%}+%%%{%%{[%%%{415236096,[5]%%%},0]:[1,0,%%%{-1,[1]%%%}]%%},[7,9]%%%}+%%%{%%{[%%%{-267
386880,[6]%%%},0]:[1,0,%%%{-1,[1]%%%}]%%},[7,8]%%%}+%%%{%%{[%%%{81788928,[7]%%%},0]:[1,0,%%%{-1,[1]%%%}]%%},[7
,7]%%%}+%%%{%%{[%%%{-9437184,[8]%%%},0]:[1,0,%%%{-1,[1]%%%}]%%},[7,6]%%%}+%%%{-16777216,[6,15]%%%}+%%%{%%%{754
97472,[1]%%%},[6,14]%%%}+%%%{%%%{-56623104,[2]%%%},[6,13]%%%}+%%%{%%%{-306184192,[3]%%%},[6,12]%%%}+%%%{%%%{91
2261120,[4]%%%},[6,11]%%%}+%%%{%%%{-1157627904,[5]%%%},[6,10]%%%}+%%%{%%%{794820608,[6]%%%},[6,9]%%%}+%%%{%%%{
-289406976,[7]%%%},[6,8]%%%}+%%%{%%%{44040192,[8]%%%},[6,7]%%%}+%%%{%%{[%%%{-75497472,[1]%%%},0]:[1,0,%%%{-1,[
1]%%%}]%%},[5,14]%%%}+%%%{%%{[%%%{452984832,[2]%%%},0]:[1,0,%%%{-1,[1]%%%}]%%},[5,13]%%%}+%%%{%%{[%%%{-1123024
896,[3]%%%},0]:[1,0,%%%{-1,[1]%%%}]%%},[5,12]%%%}+%%%{%%{[%%%{1453326336,[4]%%%},0]:[1,0,%%%{-1,[1]%%%}]%%},[5
,11]%%%}+%%%{%%{[%%%{-990904320,[5]%%%},0]:[1,0,%%%{-1,[1]%%%}]%%},[5,10]%%%}+%%%{%%{[%%%{264241152,[6]%%%},0]
:[1,0,%%%{-1,[1]%%%}]%%},[5,9]%%%}+%%%{%%{[%%%{66060288,[7]%%%},0]:[1,0,%%%{-1,[1]%%%}]%%},[5,8]%%%}+%%%{%%{[%
%%{-56623104,[8]%%%},0]:[1,0,%%%{-1,[1]%%%}]%%},[5,7]%%%}+%%%{%%{[%%%{9437184,[9]%%%},0]:[1,0,%%%{-1,[1]%%%}]%
%},[5,6]%%%}+%%%{%%%{50331648,[1]%%%},[4,15]%%%}+%%%{%%%{-301989888,[2]%%%},[4,14]%%%}+%%%{%%%{710934528,[3]%%
%},[4,13]%%%}+%%%{%%%{-735313920,[4]%%%},[4,12]%%%}+%%%{%%%{51904512,[5]%%%},[4,11]%%%}+%%%{%%%{684982272,[6]%
%%},[4,10]%%%}+%%%{%%%{-751828992,[7]%%%},[4,9]%%%}+%%%{%%%{370409472,[8]%%%},[4,8]%%%}+%%%{%%%{-86507520,[9]%
%%},[4,7]%%%}+%%%{%%%{7077888,[10]%%%},[4,6]%%%}+%%%{%%{[%%%{75497472,[2]%%%},0]:[1,0,%%%{-1,[1]%%%}]%%},[3,14
]%%%}+%%%{%%{[%%%{-478150656,[3]%%%},0]:[1,0,%%%{-1,[1]%%%}]%%},[3,13]%%%}+%%%{%%{[%%%{1282932736,[4]%%%},0]:[
1,0,%%%{-1,[1]%%%}]%%},[3,12]%%%}+%%%{%%{[%%%{-1884291072,[5]%%%},0]:[1,0,%%%{-1,[1]%%%}]%%},[3,11]%%%}+%%%{%%
{[%%%{1627914240,[6]%%%},0]:[1,0,%%%{-1,[1]%%%}]%%},[3,10]%%%}+%%%{%%{[%%%{-819986432,[7]%%%},0]:[1,0,%%%{-1,[
1]%%%}]%%},[3,9]%%%}+%%%{%%{[%%%{218628096,[8]%%%},0]:[1,0,%%%{-1,[1]%%%}]%%},[3,8]%%%}+%%%{%%{[%%%{-22020096,
[9]%%%},0]:[1,0,%%%{-1,[1]%%%}]%%},[3,7]%%%}+%%%{%%{[%%%{-524288,[10]%%%},0]:[1,0,%%%{-1,[1]%%%}]%%},[3,6]%%%}
+%%%{%%%{-50331648,[2]%%%},[2,15]%%%}+%%%{%%%{327155712,[3]%%%},[2,14]%%%}+%%%{%%%{-896532480,[4]%%%},[2,13]%%
%}+%%%{%%%{1324351488,[5]%%%},[2,12]%%%}+%%%{%%%{-1097859072,[6]%%%},[2,11]%%%}+%%%{%%%{443547648,[7]%%%},[2,1
0]%%%}+%%%{%%%{3145728,[8]%%%},[2,9]%%%}+%%%{%%%{-78643200,[9]%%%},[2,8]%%%}+%%%{%%%{28311552,[10]%%%},[2,7]%%
%}+%%%{%%%{-3145728,[11]%%%},[2,6]%%%}+%%%{%%{[%%%{-25165824,[3]%%%},0]:[1,0,%%%{-1,[1]%%%}]%%},[1,14]%%%}+%%%
{%%{[%%%{163577856,[4]%%%},0]:[1,0,%%%{-1,[1]%%%}]%%},[1,13]%%%}+%%%{%%{[%%%{-454557696,[5]%%%},0]:[1,0,%%%{-1
,[1]%%%}]%%},[1,12]%%%}+%%%{%%{[%%%{701497344,[6]%%%},0]:[1,0,%%%{-1,[1]%%%}]%%},[1,11]%%%}+%%%{%%{[%%%{-65273
8560,[7]%%%},0]:[1,0,%%%{-1,[1]%%%}]%%},[1,10]%%%}+%%%{%%{[%%%{371195904,[8]%%%},0]:[1,0,%%%{-1,[1]%%%}]%%},[1
,9]%%%}+%%%{%%{[%%%{-124256256,[9]%%%},0]:[1,0,%%%{-1,[1]%%%}]%%},[1,8]%%%}+%%%{%%{[%%%{22020096,[10]%%%},0]:[
1,0,%%%{-1,[1]%%%}]%%},[1,7]%%%}+%%%{%%{[%%%{-1572864,[11]%%%},0]:[1,0,%%%{-1,[1]%%%}]%%},[1,6]%%%}+%%%{%%%{16
777216,[3]%%%},[0,15]%%%}+%%%{%%%{-113246208,[4]%%%},[0,14]%%%}+%%%{%%%{330301440,[5]%%%},[0,13]%%%}+%%%{%%%{-
543424512,[6]%%%},[0,12]%%%}+%%%{%%%{552075264,[7]%%%},[0,11]%%%}+%%%{%%%{-356253696,[8]%%%},[0,10]%%%}+%%%{%%
%{144703488,[9]%%%},[0,9]%%%}+%%%{%%%{-35389440,[10]%%%},[0,8]%%%}+%%%{%%%{4718592,[11]%%%},[0,7]%%%}+%%%{%%%{
-262144,[12]%%%},[0,6]%%%} / %%%{%%{poly1[%%%{-1,[1]%%%},0]:[1,0,%%%{-1,[1]%%%}]%%},[12,0]%%%}+%%%{%%%{-6,[2]%
%%},[11,0]%%%}+%%%{%%{poly1[%%%{12,[1]%%%},0]:[1,0,%%%{-1,[1]%%%}]%%},[10,1]%%%}+%%%{%%{poly1[%%%{-12,[2]%%%},
0]:[1,0,%%%{-1,[1]%%%}]%%},[10,0]%%%}+%%%{%%%{48,[2]%%%},[9,1]%%%}+%%%{%%%{-2,[3]%%%},[9,0]%%%}+%%%{%%{poly1[%
%%{-48,[1]%%%},0]:[1,0,%%%{-1,[1]%%%}]%%},[8,2]%%%}+%%%{%%{poly1[%%%{36,[2]%%%},0]:[1,0,%%%{-1,[1]%%%}]%%},[8,
1]%%%}+%%%{%%{poly1[%%%{27,[3]%%%},0]:[1,0,%%%{-1,[1]%%%}]%%},[8,0]%%%}+%%%{%%%{-96,[2]%%%},[7,2]%%%}+%%%{%%%{
-96,[3]%%%},[7,1]%%%}+%%%{%%%{36,[4]%%%},[7,0]%%%}+%%%{%%{poly1[%%%{64,[1]%%%},0]:[1,0,%%%{-1,[1]%%%}]%%},[6,3
]%%%}+%%%{%%{poly1[%%%{96,[2]%%%},0]:[1,0,%%%{-1,[1]%%%}]%%},[6,2]%%%}+%%%{%%{poly1[%%%{-168,[3]%%%},0]:[1,0,%
%%{-1,[1]%%%}]%%},[6,1]%%%}+%%%{%%%{288,[3]%%%},[5,2]%%%}+%%%{%%%{-36,[5]%%%},[5,0]%%%}+%%%{%%{poly1[%%%{-192,
[2]%%%},0]:[1,0,%%%{-1,[1]%%%}]%%},[4,3]%%%}+%%%{%%{poly1[%%%{168,[4]%%%},0]:[1,0,%%%{-1,[1]%%%}]%%},[4,1]%%%}
+%%%{%%{poly1[%%%{-27,[5]%%%},0]:[1,0,%%%{-1,[1]%%%}]%%},[4,0]%%%}+%%%{%%%{-288,[4]%%%},[3,2]%%%}+%%%{%%%{96,[
5]%%%},[3,1]%%%}+%%%{%%%{2,[6]%%%},[3,0]%%%}+%%%{%%{poly1[%%%{192,[3]%%%},0]:[1,0,%%%{-1,[1]%%%}]%%},[2,3]%%%}
+%%%{%%{poly1[%%%{-96,[4]%%%},0]:[1,0,%%%{-1,[1]%%%}]%%},[2,2]%%%}+%%%{%%{poly1[%%%{-36,[5]%%%},0]:[1,0,%%%{-1
,[1]%%%}]%%},[2,1]%%%}+%%%{%%{poly1[%%%{12,[6]%%%},0]:[1,0,%%%{-1,[1]%%%}]%%},[2,0]%%%}+%%%{%%%{96,[5]%%%},[1,
2]%%%}+%%%{%%%{-48,[6]%%%},[1,1]%%%}+%%%{%%%{6,[7]%%%},[1,0]%%%}+%%%{%%{poly1[%%%{-64,[4]%%%},0]:[1,0,%%%{-1,[
1]%%%}]%%},[0,3]%%%}+%%%{%%{poly1[%%%{48,[5]%%%},0]:[1,0,%%%{-1,[1]%%%}]%%},[0,2]%%%}+%%%{%%{poly1[%%%{-12,[6]
%%%},0]:[1,0,%%%{-1,[1]%%%}]%%},[0,1]%%%}+%%%{%%{poly1[%%%{1,[7]%%%},0]:[1,0,%%%{-1,[1]%%%}]%%},[0,0]%%%} Erro
r: Bad Argument Value

________________________________________________________________________________________

maple [B]  time = 1.34, size = 6194, normalized size = 27.78 \[ \text {output too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(csc(f*x+e)^5*(a+b*tan(f*x+e)^2)^(3/2),x)

[Out]

result too large to display

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int {\left (b \tan \left (f x + e\right )^{2} + a\right )}^{\frac {3}{2}} \csc \left (f x + e\right )^{5}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csc(f*x+e)^5*(a+b*tan(f*x+e)^2)^(3/2),x, algorithm="maxima")

[Out]

integrate((b*tan(f*x + e)^2 + a)^(3/2)*csc(f*x + e)^5, x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.00 \[ \int \frac {{\left (b\,{\mathrm {tan}\left (e+f\,x\right )}^2+a\right )}^{3/2}}{{\sin \left (e+f\,x\right )}^5} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + b*tan(e + f*x)^2)^(3/2)/sin(e + f*x)^5,x)

[Out]

int((a + b*tan(e + f*x)^2)^(3/2)/sin(e + f*x)^5, x)

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csc(f*x+e)**5*(a+b*tan(f*x+e)**2)**(3/2),x)

[Out]

Timed out

________________________________________________________________________________________